7 research outputs found

    Markers of Murine Embryonic and Neural Stem Cells, Neurons and Astrocytes: Reference Points for Developmental Neurotoxicity Testing

    Get PDF
    Developmental neurotoxicity (DNT) is a serious concern for environmental chemicals, as well as for food and drug constituents. Animal-based DNT models have relatively low sensitivity, and they are limited by high work-load, cost and animal ethics. Murine embryonic stem cells (mESC) recapitulate several critical processes involved in the development of the nervous system if they are induced to differentiate into neural cells. They therefore represent an alternative toxicological model to predict human hazard. In this review, we discuss how mESC can be used for DNT assays. We have compiled a list of mRNA markers that define undifferentiated mESC (n = 42); neural stem cells (n = 73), astrocytes (n = 25) and the pattern of different neuronal and non-neuronal cell types generated (n = 57). We propose that transcriptional profiling can be used as a sensitive endpoint in toxicity assays to distinguish neural differentiation states during normal and disturbed development. Importantly, we believe that it can be scaled up to relatively high throughput whilst still providing rich information on disturbances affecting small cell subpopulations. Moreover, this approach can provide insight into underlying mechanisms and pathways of toxicity. We broadly discuss the methodological basis of marker lists and DNT assay design. The discussion is put in the context of a new generation of alternative assays (embryonic stem cell based DNT testing = ESDNT V2.0), that may later include human induced pluripotent stem cells, and that are not designed for 1:1 replacement of animal experiments, but are rather intended to improve human risk assessment by using independent scientific principles.JRC.I.2-Validation of Alternative Method

    Baicalin Maintains Late-Stage Functional Cardiomyocytes in Embryoid Bodies Derived from Murine Embryonic Stem Cells

    No full text
    Background/Aims: Low efficiency of cardiomyocyte (CM) differentiation from embryonic stem (ES) cells limits their therapeutic use. The objective of this study was to investigate the effect of baicalin, a natural flavonoid compound, on the in vitro cardiac differentiation of murine ES cells. Methods: The induction of ES cells into cardiac-like cells was performed by embryoid body (EB)-based differentiation method. The electrophysiological properties of the ES cell-derived CMs (ES-CMs) were measured by patch-clamp. The biomarkers of ES-CMs were determined by quantitative RT-PCR and immunofluorescence. Results: Continuous baicalin treatment decreased the size of EBs, and increased the proportion of α-actinin-positive CMs and transcript level of cardiac specific markers in beating EBs by inducing cell death of non-CMs. Baicalin increased the percentage of working ES-CMs which had typical responses to β-adrenergic and muscarinic stimulations. Conclusion: Baicalin maintains the late-stage functional CMs in EBs derived from murine ES cells. This study describes a new insight into the various biological effects of baicalin on cardiac differentiation of pluripotent stem cells

    Markers of murine embryonic and neural stem cells, neurons and astrocytes : reference points for developmental neurotoxicity testing

    No full text
    Developmental neurotoxicity (DNT) is a serious concern for environmental chemicals, as well as for food and drug constituents. Animal-based DNT models have relatively low sensitivity, and they are burdened by high work-load, cost and animal ethics. Murine embryonic stem cells (mESC) recapitulate several critical processes involved in the development of the nervous system if they are induced to differentiate into neural cells. They therefore represent an alternative toxicological model to predict human hazard. In this review, we discuss how mESC can be used for DNT assays. We have compiled a list of mRNA markers that define undifferentiated mESC (n = 42), neural stem cells (n = 73), astrocytes (n = 25) and the pattern of different neuronal and non-neuronal cell types generated (n = 57). We propose that transcriptional profiling can be used as a sensitive endpoint in toxicity assays to distinguish neural differentiation states during normal and disturbed development. Importantly, we believe that it can be scaled up to relatively high throughput whilst still providing rich information on disturbances affecting small cell subpopulations. Moreover, this approach can provide insight into underlying mechanisms and pathways of toxicity. We broadly discuss the methodological basis of marker lists and DNT assay design. The discussion is put in the context of a new generation of alternative assays (embryonic stem cell based DNT testing = ESDNT V2.0), that may later include human induced pluripotent stem cells, and that are not designed for 1:1 replacement of animal experiments, but are rather intended to improve human risk assessment by using independent scientific principles

    Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing

    No full text
    Developmental neurotoxicity (DNT) is a serious concern for environmental chemicals, as well as for food and drug constituents. Animal-based DNT models have relatively low sensitivity, and they are burdened by high work-load, cost and animal ethics. Murine embryonic stem cells (mESC) recapitulate several critical processes involved in the development of the nervous system if they are induced to differentiate into neural cells. They therefore represent an alternative toxicological model to predict human hazard. In this review, we discuss how mESC can be used for DNT assays. We have compiled a list of mRNA markers that define undifferentiated mESC (n = 42), neural stem cells (n = 73), astrocytes (n = 25) and the pattern of different neuronal and non-neuronal cell types generated (n = 57). We propose that transcriptional profiling can be used as a sensitive endpoint in toxicity assays to distinguish neural differentiation states during normal and disturbed development. Importantly, we believe that it can be scaled up to relatively high throughput whilst still providing rich information on disturbances affecting small cell subpopulations. Moreover, this approach can provide insight into underlying mechanisms and pathways of toxicity. We broadly discuss the methodological basis of marker lists and DNT assay design. The discussion is put in the context of a new generation of alternative assays (embryonic stem cell based DNT testing = ESDNT V2.0), that may later include human induced pluripotent stem cells, and that are not designed for 1:1 replacement of animal experiments, but are rather intended to improve human risk assessment by using independent scientific principles

    Disseminated tumour cells with highly aberrant genomes are linked to poor prognosis in operable oesophageal adenocarcinoma

    No full text
    Background: Chromosomal instability (CIN) has repeatedly been identified as a prognostic marker. Here we evaluated the percentage of aberrant genome per cell (PAG) as a measure of CIN in single disseminated tumour cells (DTC) isolated from patients with operable oesophageal adenocarcinoma (EAC), to assess the impact of CINhigh DTCs on prognosis. Methods: We isolated CK18(positive) DTCs from bone marrow (BM) or lymph node (LN) preparations of operable EAC patients. After whole-genome amplification, single DTCs were analysed for chromosomal gains and losses using metaphase-based comparative genomic hybridisation (mCGH). We calculated the PAG for each DTC and determined the critical threshold value that identifies high-risk patients by STEPP (Subpopulation Treatment Effect Pattern Plot) analysis in two independent EAC patient cohorts (cohort #1, n = 44; cohort # 2; n = 29). Results: The most common chromosomal alterations observed among the DTCs were typical for EAC, but the DTCs showed a varying PAG between individual patients. Generally, LNDTCs displayed a significantly higher PAG than BMDTCs. STEPP analysis revealed an increasing PAG of DTCs to be correlated with an increased risk for short survival in two independent EAC cohorts as well as in the corresponding pooled analysis. In all three data sets (cohort # 1, cohort # 2 and pooled cohort), PAG(high) DTCs conferred an independent risk for a significantly decreased survival. Conclusions: The analysis of PAG/CIN in solitary marker-positive DTCs identifies operable EAC patients with poor prognosis, indicating a more aggressive minimal residual disease
    corecore